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Figure 1: VisMimic takes raw video footage from both the trainee and the reference as input and outputs an augmented feedback 
video. To achieve this, VisMimic takes following steps: 1) reconstructing 3D human motion from the videos; 2) transforming 
motion data into motion chain structure; 3) generating feedback in the form of textual instructions and visual animations; 4) 
supporting editing of the visual representations and observation perspectives. 

Abstract 
Augmented video is a common medium for remote sports coaching, 
facilitating communication between trainees and coaches. Existing 
video augmentation techniques struggle to simultaneously convey 
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both the overall motion dynamics and static key poses. This limita-
tion hinders feedback comprehension in motor learning, making it 
difficult to understand where errors occur and how to correct them. 
To address this, we first reviewed popular video augmentation so-
lutions. In collaboration with professional coaches, we integrated 
motion chain into feedback videos to combine key poses with mo-
tion trajectories. It supports multi-view observation and feedback 
explanation from overview to detail. To assist coaches in creating 
feedback videos, we present VisMimic, a human-AI interaction sys-
tem that automatically analyzes trainee videos against reference 
movements, generates animated feedback, and enables customiza-
tion. User studies show VisMimic’s usability and effectiveness in 
enhancing motion analysis and communication for motor coaching. 
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1 Introduction 
In motor skill learning, video plays a pivotal role in facilitating 
communication between coaches and learners, particularly when in-
person instruction is not feasible. In a typical video-based coaching 
scenario, learners record their movements and send the footage 
to coaches, who drawing on their expertise, provide two types of 
feedback: 1) corrective instructions targeting movement errors, and 
2) reference videos demonstrating the correct technique. While this 
dual-channel feedback enhances information flow, it also introduces 
an inherent gap in learners’ understanding of movements: 

First, there are inherent difficulties in integrating textual 
feedback with visual demonstrations. Textual feedback from 
coaches, such as “raise your elbow,” requires learners to mentally 
translate language into movement, whereas demonstration videos 
rely on visual-to-motor imitation. Without a clear connection be-
tween the two, learners may struggle to associate abstract feed-
back with specific movement adjustments. Second, individual 
differences can lead learners to interpret the same textual 
instruction in different ways. Differences in physical ability and 
experience may cause them to perform the same instruction dif-
ferently. For example, “slightly bend your knees” might lead one 
learner to bend 30 degrees and another to bend 60 degrees, making 
training results less consistent and effective. Therefore, a key to en-
hancing coach–learner communication is the seamless integration 
of coach proposed feedback into video content. 

Video augmentation has emerged as a widely recognized ap-
proach for bridging textual and visual information [85]. However, 
current methods still face challenges across the two stages of motion 
feedback. In the Feedback Generation, text-based instructions de-
pend heavily on the coach’s expertise. When reviewing a learner’s 
performance, coaches must stay involved throughout the entire 
process: observing the movement, analyzing motion data, generat-
ing corrective suggestions (text), and embedding these corrections 
into videos through techniques such as visual highlighting [22] 
and linking [31]. In the Feedback Presentation, effective motion 
understanding requires support for both: 1) Precise interpretation 
of key postures at specific time points, and 2) Comprehensive as-
sessment of continuous movement dynamics. To meet these needs, 
video augmentation must integrate feedback across two critical 
dimensions: 1) Spatial: identifying the erroneous body part and 
guiding how to correct it; 2) Temporal: locating the key frame 
where the error occurs and illustrating the subsequent right move-
ment to follow. Based on our preliminary study, we classify existing 
methods into two categories (Fig. 2): 1) dynamic trajectories that 

Figure 2: Current feedback presentation can be categorized 
along two critical dimensions: spatial and temporal. 

enhance spatial understanding [60, 75], and 2) sequential snapshots 
that represent temporal patterns [28, 69]. Nevertheless, current 
feedback presentation approaches often focus on only a single di-
mension of feedback, limiting the clarity of the feedback delivered. 
Thus, coaches need to handle both feedback creation and delivery. 

To address these challenges, we introduce a semantic under-
standing workflow to assist coaches in feedback video creation. 
For Feedback Generation, a motion understanding model [24] 
extracts structured textual feedback by comparing trainee motion 
against a reference, enabling semantic translation from motion 
differences to language. Meanwhile, a text-driven motion editing 
model [16] transforms these textual instructions into guidance 
animation by adjusting joint trajectories or motion magnitudes, 
thereby supporting knowledge transfer from language to visual 
representation. This workflow alleviates the cognitive and labor 
burdens on coaches. For Feedback Presentation, we propose a rep-
resentation that integrates the motion chain as its underlying data 
structure to convey both the overall motion dynamics and static 
key poses. The motion chain, a widely used concept in motion anal-
ysis [30, 78], consists of a sequence of interconnected key poses 
and their relationships. Inspired by the character animation editing 
interface [2, 84], the resulting augmented video combines key poses 
with motion trajectories, supporting both critical dimensions of 
motion feedback: 1) Spatial — enabling in-depth observation of 
static key poses, and 2) Temporal — providing a complete overview 
of continuous motion trajectories. 

Designed for coaches as the target users, VisMimic was built on 
a consolidated workflow to generate augmented feedback videos 
from trainee and reference footage for motor coaching. VisMimic 
employs state-of-the-art video motion capture models [51] to re-
construct 3D human motion and full-body avatars, enabling motion 
comparison. Through semi-automated key pose extraction and kine-
matic constraint setting, the system organizes motion data into a 
structured motion chain representation, which supports detailed 
analysis and the generation of feedback candidates. Our novelty lies 
in the integration of the motion chain representation and its step-by-
step creation workflow. This unified approach enables coaches to 
incorporate experiential knowledge, perform detailed analysis, and 
iteratively improve feedback quality. VisMimic demonstrates prac-
tical applicability and lays the foundation for more user-friendly 
end-to-end AI coaching tools by: (1) defining a practical input-to-
output feedback pipeline, (2) enabling controllable editing, and 
(3) supporting domain knowledge integration via structured data 
handles. In summary, our research has three main contributions: 

https://doi.org/10.1145/3746059.3747794
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• a structured representation , which integrated motion chain 
in feedback videos to combine key poses with motion trajec-
tory, offers a foundation for human-AI collaboration; 

• a system, VisMimic, that supports motion analysis for feed-
back generation and video creation; 

• user studies that validate the efficiency of generated feedback 
video from both coaches and trainees perspective and utility 
of VisMimic for motor coaching. 

2 Related Work 
In this section, we review relevant research, focusing on human 
motion data visualization and human motion analysis. 

2.1 Data Visualization for Motor Coaching 
Data visualization plays a crucial role in motor coaching. It can 
help users understand motion data that consists of continuous 
human poses with diverse spatial and temporal variations [34]. To 
enhance coaching effectiveness, it is primarily applied in two ways: 
representing motion and augmenting feedback. 

Motion Representation. Visualizing motion capture data is 
essential for motion pattern recognition and analysis. To encode 
the sequential nature, various visualization approaches have been 
proposed. For example, Motion Belts [80] and Motion Volume [52] 
display motion capture data as short clips of selected key frames, 
providing an abstract illustration of motion. OutFlow [72] employs 
hierarchical clustering to reduce the number of poses in flow visual-
ization, and generates video clips associated with camera paths for 
effective motion overviews [12]. Another category of visualization 
aims to characterize relationships among different poses in a motion 
database [27], often displayed in a 2D space [34]. Pretorius et al. [55] 
proposed a bar tree to abstract multivariate motion state transitions, 
while Blaas et al. [17] aggregated transitions into spline bundles 
in a 2D graph layout. These methods provide both an overview 
and detailed insights into specific motion transition patterns [58]. 
Additionally, PoseCoach [46] and MotionFlow [36] enable the com-
parison of motions. However, these methods encounter certain 
limitations. Since motion data has semantic meaning, coaches often 
need to understand the context and intent behind specific move-
ments, which can be obscured in abstract representations. Moreover, 
the complexity of motion data can lead to information overload. 
Thus, feedback augmentation methods are introduced to illustrate 
coaching feedback to users directly. 

Feedback Augmentation. Data visualization techniques have 
been explored to enhance feedback in motor coaching, with ap-
proaches ranging from 2D to 3D. 2D augmented video is a common 
medium for sports coaching. For instance, MotionPro [5] visualizes 
baseball and golf swing trajectories in videos. Semeraro et al. [60] 
investigate visual cues to enhance movement learning in instruc-
tional videos. Clarke et al. [22] adapt the playback speed based 
on user motion to support real-time alignment. Tang et al. [65] 
combines skeleton overlays and corrective feedback for physiother-
apy guidance. However, 2D augmentations face limitations such as 
depth ambiguity and restricted spatial context due to the 3D nature 
of motion. Recently, 3D approaches leveraging AR/VR have shown 
promise in providing immersive feedback for sports coaching. Wu 
et al. [75] explored AR environments for at-home workouts, offer-
ing real-time visual feedback on users’ movements. Lin et al. [45] 
developed an AR basketball free-throw training system, providing 

visual feedback on shot trajectories alongside ideal paths. Similarly, 
avaTTAR [50] combines on-body and detached AR cues to refine 
table tennis strokes. To help users apply augmented feedback in 
training, Video2MR [35] demonstrates the potential to generate 3D 
instructions from videos, while Augmented Coach [71] annotates 
3D volumetric recordings to critique athletic form. Although 3D 
augmentation solutions address spatial challenges, their reliance 
on head-mounted displays (HMDs) limits accessibility compared to 
video content that offers broader compatibility and flexibility. 

Thus, we integrate 3D information of motion capture data into 
augmented videos, which are widely used in motor coaching [60], 
to provide precise feedback and support multi-view observation 
for users. Specifically, we aim to employ a user-centered approach 
to explore potential improvements by combining key poses with 
kinematic information (e.g., trajectory) for feedback representation. 

2.2 Models for Human Motion Analysis 
Human motion analysis is essential in motor coaching, providing 
feedback to improve performance and prevent injuries. Video is 
an accessible method for analyzing human motion and is widely 
used by coaches and trainees. Traditional video-based approaches 
mostly rely on manual annotation to extract motion features (e.g., 
joint angles, positions) for comparison with standard motions [46]. 
Recent advances in pose estimation enable direct extraction of 
2D/3D motion capture data from videos, supporting automated pose 
comparison and analysis. For example, AI Coach [69] and AIFit [29] 
apply deep learning for personalized training analysis, while Pose 
Tutor [25] and 3D Pose Based Feedback [83] focus on providing 
pose corrections. However, most existing methods emphasize static 
key poses [26], overlooking dynamic kinematic characteristics in 
continuous motion, and often provide scores or simple comparisons 
without actionable or contextualized guidance for trainees [14]. 

Recent efforts have integrated natural language in human motion 
analysis. Datasets such as PoseScript [23], FLAG3D [66], Motion-
Bank [77], and ActivityNet [33] bridge motion and language by 
providing natural language annotations of motion instructions, 
facilitating the generation of actionable feedback. For example, 
MotionGPT [37] treats human motion as a foreign language, trans-
lating movement patterns into semantic representations to support 
multiple motion tasks. Other approaches, such as PoseFix [24], Mo-
jito [61], MotionLLM [20], and ChatMotion [43], further explore 
text-driven motion correction and feedback generation. However, 
these methods are often limited to basic analysis, largely due to 
the absence of domain-specific assessment criteria and fine-grained 
instruction-tuning data. This restricts their ability to provide holis-
tic and task-specific feedback for motor coaching. 

Recent studies have demonstrated the feasibility of bridging 
human motion and action semantics through kinematic phrase 
representations to support motor coaching by domain-specific as-
sessment criteria [48]. Thus, our work aims to integrate automated 
motion analysis with coach-driven insights to facilitate feedback 
delivery that is both actionable and comprehensible to trainees. 

3 Background 
In this section, we first introduce the concept of feedback videos in 
the context of coaching, followed by the motion chain, a common 
representation used to analyze human motion patterns. 
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Figure 3: An example of decomposing “the dumbbell power 
clean and push jerk” into a motion chain structure. 

Feedback Video. Feedback videos are post-exercise recordings 
enriched with personalized guidance or corrections based on a 
trainee’s performance [13]. Their growing popularity stems from 
their convenience, accessibility, privacy protection, and the rise 
of at-home workouts. Unlike generic instructional videos, feed-
back videos are tailored to individuals, focusing on specific motion 
segments that require improvement. Coaches review the trainee’s 
recordings, analyze errors, and insert comments or visual augmen-
tations (e.g., visual cues) at key moments to clarify feedback [54]. 
Applications such as SwingVision [8], VisualEyes [9], and Volt Ath-
letics [10] support this process by allowing annotation, motion 
playback, and side-by-side comparison with expert demonstrations. 
Effective feedback videos should clearly indicate (1) what motion 
errors exist compared to the reference standard and (2) how 
to correct the error and perform the movement properly. 

Motion Chain. Motion is a sequence of continuous pose changes 
that describe the trajectory of human poses over time. A pose is 
the fundamental unit of motion, representing the joint positions 
and angles of the body at a specific time point. It corresponds to a 
static frame within a dynamic movement. Thus, motion can be rep-
resented and analyzed using a set of key poses. Based on temporal 
relationships, key poses are categorized into four coarse-grained 
types: initial pose, extreme pose, transition pose, and final posel, 
following prior work [64]. A motion sequence may include multiple 
extreme and transition poses, each carrying semantic significance. 
These poses are connected through kinematic constraints,including 
joint trajectories as well as angles and distances between multiple 
joints. Thus, we define a motion chain as a sequence of intercon-
nected key poses and their relationships [30, 78]. 

For example, as shown in Figure 3, the motion chain of “the 
dumbbell power clean and push jerk” consists of four key poses 
based on movement phases and domain knowledge, excluding the 
initial pose (𝑝0). These key poses are: the starting position (𝑝1), the 
clean phase (𝑝2), the catch (𝑝3), and the jerk phase (𝑝4). The remain-
ing frames consist of transition poses, representing intermediate 
movements between key poses. The entire motion is represented 
as: 𝑀 = [𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4]. We outline several key relationships be-
tween the key poses: Temporal Order : The clean phase precedes the 
jerk phase. Kinematic Constraints: During the clean, the body must 
extend the hips to stand upright (𝑝1-𝑝2). During the jerk, the arms 
must lift the dumbbell overhead (𝑝3-𝑝4). Throughout the motion, it 
is crucial to keep the feet stable and the spine upright. 

However, current feedback videos often lack the granularity 
needed to highlight motion patterns, leading to suboptimal coach-
ing outcomes. Our goal is to identify space to enhance feedback 
videos for more effective support in video-based coaching. 

4 Preliminary Study 
In this section, we conducted a preliminary study to investigate the 
challenges faced in current video-based coaching and to uncover 
potential improvements for enhancing feedback support. 

4.1 Procedures 
Our study follows a user-centered process, including a review of 
existing feedback representations and interviews with professional 
coaches to understand their feedback generation practices. 

4.1.1 Literature Review. To investigate existing video augmenta-
tion approaches for representing human motion with the feedback, 
we first conducted a literature review covering 20 research studies 
[12, 22, 28, 34, 36, 38, 39, 42, 44, 46, 50, 52, 59, 60, 65, 67, 69, 71, 75, 80], 
10 popular commercial sports training applications [1, 3–11], and 
the 20 most viewed English-language workout videos on YouTube 
that include augmented visual elements. After identifying research 
studies and applications sources via an initial Google keyword 
search filtered for motion representation relevance, two authors 
independently applied inclusion/exclusion criteria to ensure qual-
ity. Sources were excluded if they: (1) contained no or very few 
motion augmentations, (2) were not primarily focused on repre-
senting human motion, or (3) did not depict a complete sports 
motion. The resulting sources show the diverse design space for 
augmented motion data visualizations. Through this screening, we 
observed existing representations predominantly focused on spatial 
or temporal aspects. 

Building on this observation and prior work [79] analyzing 
spatio-temporal characteristics of motion, we developed a codebook 
through an iterative process [85] centered on temporal alignment 
as the key distinguishing factor – specifically, whether augmenta-
tion elements evolved dynamically and continuously in real-
time with the performer’s movement. An initial draft codebook 
was refined via preliminary analysis of a subset of sources: Three 
authors independently applied the draft criteria, discussed discrep-
ancies, and iteratively refined classification rules until consensus 
was reached. Using the finalized codebook, the authors conducted 
independent manual coding. To enhance validity and minimize bias, 
classifications were further reviewed in consultation with two ex-
ternal experts, including a senior sports coach with over a decade of 
experience advising national teams. Disagreements were resolved 
through iterative discussion, ensuring consistency. Through this 
dual-review process, we identified two predominant types of mo-
tion augmentation representations: (1) dynamic trajectories and (2) 
sequential snapshots. As shown in Fig. 4. 

• Dynamic Trajectory: This approach represents continuous 
motion by visualizing joint or full-body movements over time 
(Fig. 4.A). Common designs include directional arrows to indi-
cate movement direction, speed, and distance, as well as body 
highlights and visual metaphors that update in real time. These 
augmentations help users understand how to correct motion by 
visually following the ideal path. 
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Figure 4: We classify existing video augmentation methods for representing human motion based on temporal alignment into 
two categories: Dynamic Trajectory [67] and Sequential Snapshot [46] (Reprinted with permission from IEEE Transactions on 
Visualization and Computer Graphics, Copyright of © 2024 IEEE). 

• Sequential Snapshot: This method decomposes motion into 
discrete static poses, each augmented with visual elements such 
as guide lines and reference planes (Fig. 4.B). It is useful for 
analyzing motion pattern and identifying key errors at specific 
stages. By presenting motion in a step-by-step format, users can 
engage in targeted learning based on individual poses. 

4.1.2 Interview. Building on the previous studies and our initial 
classification, we conducted semi-structured interviews with eight 
professional sports coaches (E1-E8; Age: 26-37), each with at least 
three years of experience in video-based coaching. 

We first collected background information about their remote 
coaching practices, focusing on how feedback videos were used to 
deliver instructions and their feedback generation practices. Partic-
ipants then viewed three sets of feedback video clips illustrating 
different exercises: two foundational workout movements (Hip 
Bridge and Push-ups) and one complex Tai Chi movement (“White 
Crane Spreads Its Wings”). Each movement was presented in three 
augmentation formats, following design guidelines from Semeraro 
et al. [60] and Wu et al. [75]: (1) text-only, (2) dynamic trajectory, 
and (3) sequential snapshots. Each clip lasts about 30 seconds. 

After viewing each set, participants were asked to select the most 
effective format and explain why. Through open-ended discussion, 
they compared the strengths and limitations of each approach. 
From the interview transcripts, we extracted key challenges faced 
in using feedback videos for instruction. We also introduced the 
concept of the motion chain, which is commonly used in motion 
analysis, and presented two example cases. Coaches E1-E5 were 
already familiar with this concept. Participants were encouraged to 
suggest possible improvements to current augmentation methods. 
Each interview lasted approximately 25 minutes. 

4.2 Findings and Discussions 
4.2.1 Challenges Faced in Video-Based Coaching. While video is 
commonly used to support feedback in motor skill coaching, several 
challenges persist on feedback generation and representaion. 

• C1: Existing motion representation struggle to simultane-
ously convey both the overall motion dynamics and static 
key poses. Most current augmentation methods emphasize ei-
ther dynamic movement (e.g., motion trajectories) or static pos-
ture (e.g., key poses), but not both. As E1 explained, “The motion 
trail gives a good sense of how the body moves through space, but 
it lacks detail at specific poses. On the other hand, snapshot visuals 
show individual positions clearly, but I lose the sense of how the 

motion flows.” Coaches emphasized the need for a feedback rep-
resentation that supports both the understanding of movement 
flow and the recognition of critical moments within motion. 

• C2: Current feedback representation is insufficient for 
guiding motion correction. Most existing feedback videos 
support two core tasks: identification (showing what the correct 
movement looks like) and comparison (highlighting deviations 
from the ideal form). As E3 noted, “I can easily identify the error 
and recognize the gaps from the augmented video.” However, they 
fall short in supporting correction—helping trainees understand 
how to adjust their motion. This limitation places a high cogni-
tive load on trainees, especially when dealing with unfamiliar or 
complex movements. E1 and E5 highlighted this challenge, par-
ticularly with complex movements: “These feedback formats alone 
are not sufficient for coaching; a corrective motion demonstration 
may be necessary for trainees to follow and adjust accordingly”. 

• C3: Creating feedback videos is both challenging and time-
consuming. Visual guidance has been shown to effectively con-
vey feedback [31, 60], yet existing feedback videos often lack such 
enhancements. In our interviews, four coaches stated they “never 
or seldom use visual guidance for feedback”. Despite available 
design guidelines [75], many coaches lack the visual design skills 
needed to produce high-quality feedback videos, making the pro-
cess both difficult and time-intensive. Seven out of eight coaches 
emphasized the complexity and effort required to generate effec-
tive augmented videos. Notably, most participants had little or 
no prior experience with video-generation tools, indicating that 
the challenge stems not only from design complexity but also 
from limited exposure to or training in such tools. 

4.2.2 Potential Improvements for Video-Based Coaching. Based on 
participants’ suggestions for enhancing feedback videos, we identi-
fied two core requirements to address the challenges observed: 

• Feedback Representation: Combing static key poses with 
motion dynamics into feedback video. The current feedback 
video displays movement trajectories and key poses separately, 
which hinders comprehension in motor learning. We propose 
integrating motion chain structure to address this issue. By com-
bining the two elements, we can provide an overview of the 
movement pattern through key poses while also showing the 
movement details at each step (C1). Additionally, using key poses 
as nodes on a timeline allows for interactive switching between 
multiple views to observe and demonstrate animations from error 
key poses to the correct ones. 
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• Feedback Generation: Supporting easy-to-use feedback 
video generation. Augmented visualization is effective for un-
derstanding [85] and comparing information [75], and has been 
proven to be a valuable method in motor coaching [45]. The 
creation of augmented feedback videos relies on the coach’s abil-
ities in motion analysis and visual design. Our goal is to utilize 
3D motion reconstruction technology to compare the trainee’s 
movements with a reference standard, thereby assisting coaches 
in providing feedback. Additionally, based on the design space of 
augmented visualizations for movement [60], we aim to provide 
feedback through animations and augmented visualizations to 
make corrective feedback more comprehensible. 

These requirements guided the design of VisMimic: 1) Integrat-
ing motion chains into feedback videos to combine key poses with 
motion trajectories (C1); 2) Utilizing state-of-the-art motion analy-
sis models to support coaches in providing feedback (C3); 3) Aug-
menting feedback with correctional animations that visually demon-
strate the transition from incorrect to correct movement (C2). 

5 Feedback Video with Motion Chain 
Inspired by character animation interfaces [2, 84], we propose an 
integrated motion chain representation for feedback videos. We 
first introduce the overview, then the underlying motion chain 
structure, and finally the VisMimic workflow built upon it. 

5.1 Representation Overview 
To combine key pose with trajectory, this representation consists of 
following components: trainee motion, reference key poses, transi-
tion trajectories, feedback annotations and supportive UI elements. 
It is screen-friendly, supporting zooming and playback controls for 
flexible viewing and interaction. Inspired by TimeTunnel [84], the 
view design multiplexes time and space. For cases where people 
remain in place, the reference/timeline remain static while trainee 
motion and trajectories advance Fig. 5. Alternatively, this repre-
sentation can shift the reference dynamically while keeping the 
trainee spatially centered. 

• Trainee Motion serves as the primary content in the feedback 
video, presenting the movements that require correction. It is 
positioned as a motion progress indicator, where dynamic move-
ments and motion errors are displayed through playback control. 

• Reference Key Poses are reference models placed alongside the 
trainee’s motion to illustrate correct poses at key moments. They 
are aligned with the trainee’s key pose timeline. With highlighted 
error body parts and feedback annotations, users can easily locate 
when and where motion errors occur. Each key pose serves as an 
interactive node. It supports multi-view rotation and playback to 
show correct dynamic movements and enables users to navigate 
quickly and access detailed feedback. 

• Transition Trajectories are lines connecting adjacent reference 
key poses, illustrating the reference motion flow between them. 
These trajectories indicate temporal progression and the spatial 
relationship between key poses. As shown in Fig. 5, the trajectory 
between key poses are linked through related body parts with 
movement. Aligned with the timeline, these trajectories allow 
users to compare key joint differences between the reference 
motion and the trainee’s current pose. 

• Feedback is delivered in two formats. Feedback cards provide 
a snapshot highlighting the differences from the reference stan-
dard to visually indicate the motion error. Feedback animations 
transform textual feedback into corrective animations, directly 
demonstrating what to do to correct the error, helping users 
intuitively understand the required adjustments. 

• UI Elements includes a timeline with navigation and playback 
controls. The timeline is scalable, and its orientation aligns with 
the perspective — side view along the X-axis and front view along 
the Y-axis (as shown in Fig. 12). It also supports dynamic and 
static reference positioning. 

5.2 Motion Chain Structure 
The motion chain is the underlying data structure that supports 
aforementioned representation. 

5.2.1 Key Pose. Key poses are a set of representative poses that 
concisely capture the essential structure of a full-body movement 
[15]. The use of key poses has been widely applied in video sum-
marization, motion retrieval [52], and character animation [84]. In 
animation or video indexing, key poses are often extracted by sam-
pling frames at a fixed interval. However, in motor skill learning, 
each key pose carries unique semantic meaning within the spe-
cific context of the movement. Following the scope defined in prior 
work [64] and incorporating expert recommendations, we identify 
key poses based on their functional importance in the movement, 
extract the corresponding frames, and arrange them sequentially 
according to their temporal order. 

5.2.2 Kinematic Constraint. This section introduces the relation-
ship between key poses (kinematic constraints) we study. Based 
on prior research in sports biomechanics [46], we initially classify 
key pose constraints into angular, positional, and temporal cate-
gories. However, relying solely on this coarse-grained classification 
still requires significant manual effort to extract user-defined pose 
attributes from motion capture data. While it is straightforward 
for single joints, handling multi-joint relationships (e.g., distance 
or contact detection) is more complex. Inspired by work linking 
3D human poses and natural language, we employ the concept 
of PoseCode [23] to enhance the constraints, which defines rela-
tionships between specific joint sets in key poses. To effectively 
represent kinematic constraints, we further refine angular and po-
sitional constraints by incorporating elementary relations: angle, 
pitch, and roll for angular constraints, and distance and relative 
position for positional constraints. In the following we detail these 
kinematic constraint classifications. 

Angular. Angular constraints represent the orientation of a 
body segment or line relative to a reference joint. These constraints 
are defined by a triplet representing the first side endpoint, the 
vertex, and the second side endpoint. The vertex is a joint, and the 
endpoints can be both joints or a joint and an axis. 

• Angle describe the bending of a body part, defined by three 
key joints (e.g., the angle between the upper arm and torso 
is formed by the elbow, shoulder, and hip). 

• Pitch & Roll describe the verticality or horizontality of 
a body part, defined by two key joints and a relative axis 
(e.g., the neck and hip, along with the hip’s z-axis, define the 
spine’s bend angle). 
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Figure 5: VisMimic generates feedback videos using an integrated motion chain representation. It includes trainee motion 
(orange), reference key poses (black), transition trajectories (yellow), and supportive UI elements (grey). Dotted orange boxes 
highlight incorrect body parts, with the numbers indicating the amount of corrective feedback associated with each. Purple 
highlights denote the currently focused feedback. The design is illustrated using the Yoga Warrior I pose. 

Figure 6: Fine-grained classification of kinematic constraints applied in motion chain. Each illustrates with an example. 

Positional. Positional constraints represent the distance and 
relative position of two key joints. These constraints are defined by a 
pair of endpoints or their projections on a specific axis. Additionally, 
the ground is treated as a special point to calculate the height. 

• Distance describes the L2-distance between two key joints 
(e.g., the distance between the hip and the ground defines 
hip height, or the distance between the left and right ankles 
defines feet distance). 

• Relative Position describes the difference between the pro-
jections of two key points along a given axis, defined by the 
two key joints and the axis (e.g., the projections of the right 
wrist and right ankle on the x-axis define which is more 
inside). 

Temporal. The aforementioned attributes describe constraints 
for fixed static poses. In contrast, temporal constraints represent 
dynamic changes (position, direction, velocity) in transitional poses. 
These constraints are defined by sets of key joints. Additionally, 
velocity is conveyed through the direction and speed of body part 
movement along the trajectory during dynamic playback, with 
color encoding reserved for future design extensions [21]. 

• Trajectory describes the spatio-temporal position of joints, 
encompassing velocity and direction (e.g., the lifting trajec-
tory of the feet can be defined by tracking the ankles). 

5.3 VisMimic Workflow 
To support create feedback video from two input videos (trainee 
and reference), we propose a human-AI collaborative workflow 
comprising four components: motion reconstruction, motion chain 
definition, feedback generation, and output editor. VisMimic recon-
structs 3D human avatars and extracts SMPL parameters [49] from 
paired videos. The motion chain definition module then extracts 
key pose frames (e.g., Bottom Phase: the lowest hip position in 
a squat) and supports setting kinematic constraints. In feedback 
generation, we involved constraints filter in PoseFix model [24] to 
analyze key pose pairs and detect motion discrepancies. We use mo-
tion principles (e.g., “Keep your upper body as straight as possible” 
during squat ascent) as external text and cross-reference them with 
discrepancies to generate the target feedback text. Additionally, we 
use feedback as motion edit texts to animate the correction of the 
error pose. Finally, the output editor show the integrated motion 
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Figure 7: VisMimic workflow encompass motion reconstruction, motion chain definition and feedback generation. It takes a 
trainee video and a reference video as input, integrates a motion chain structure, and outputs a feedback video. Motion chains 
serve as data handles, supporting coaches in incorporating their experiential knowledge into the feedback process. 

Figure 8: VisMimic overlays the input video as background 
and supports manual editing of the reconstructed results. 

chain representation with feedback, allowing coaches to customize 
the layout and visual design of the video. 

6 Method 
In this section, we developed VisMimic, which analyzes trainee 
videos against reference movements to generate feedback videos. 

6.1 Motion Reconstruction 
Extracting motion data from video is a common kinematic data 
source in sports biomechanics for analyzing movement [21, 45]. Us-
ing only 2D motion data lacks depth information. While 3D SMPL 
meshes can simulate muscle deformations during movement [49], 
the absence of texture details (e.g., clothing and hair) reduces real-
ism. To enable multi-view and high-fidelity animation observation, 
we leverage state-of-the-art computer vision models [63] to recon-
struct 3D motions from input videos (uniformly resampled to 30fps 
in preprocessing). Drawing on ExAvatar [51], which combines 3D 
Gaussians [41] and SMPL-X-based surface mesh representations 

[53], we first generate a full-body 3D avatar from a monocular 
fitness video in a fixed T-pose. The avatar is then animated with 
extracted SMPL-X motion parameters and rendered in screen space 
using 3DGS. Using this method, we generate both the trainee and 
reference avatars along with their motions. 

Validation. While the extracted SMPL-X skeletal and joint mo-
tion parameters achieve human-acceptable accuracy, challenges 
remain due to low-quality or unconstrained in-the-wild video in-
puts. These can cause motion reconstruction failures, such as phys-
iologically implausible poses (e.g., bent legs in a standing posture) 
or incorrect joint rotations leading to unnatural movements. To 
validate reconstruction quality, we provide a display view for visu-
alizing results in SMPL-X or avatar mesh and comparing it with the 
input video as background [47]. Similar to other animation editing 
user interface [2], we implement a full-body IK approach with 11 
joints (wrists, ankles, elbows, knees, head, neck, and hip), enabling 
direct manipulation through joint selection and dragging. 

6.2 Motion Chain Definition 
Based on the motion chain definition and communication with 
coaches, we first apply it to the FLAG3D dataset [66], a 3D fitness 
activity dataset with detailed language instructions. Through data 
cleaning and alignment, we manually structure it into the motion 
chain format. Then, we developed a semi-automatic processing 
method to convert reconstructed results—original video (Ori.) and 
reference video (Ref.)—into a motion chain form, which structures 
key poses and their relationships. This process includes key pose 
extraction for motion breakdown and kinematic constraint setting. 

6.2.1 Dataset Preparation. We use the FLAG3D dataset [66], which 
includes 180K videos spanning 60 daily fitness activities, comprising 
both raw real-world videos and motion capture data. Each activity 
is categorized by 10 body parts (chest, back, shoulder, arm, neck, 
abdomen, waist, hip, leg, whole body) and accompanied by detailed, 
professional sentence-level instructions. 

Since fitness activities targeting the same body part share simi-
larities, we select one representative movement from each category. 
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Working closely with four domain experts (E1-4), we manually 
process the data in three steps: 1) Identify key poses based on mo-
tion capture data and videos. For each motion, we determine key 
attributes (e.g., hip trajectory in a sumo squat) and visualize them 
to detect extreme points as key poses, followed by the first round 
expert verification. 2) Align key pose segmentation with language 
instructions. Missing instructions are supplemented through expert 
consensus. 3) Extract initial kinematic constraints from the instruc-
tions for each key pose. After ensuring that all experts have a correct 
understanding of kinematic constraints (Sec. 5.2.2), they indepen-
dently review and define constraints based on the instructions. Each 
expert annotated five fitness activities categorized by body part 
and verified another five annotated by peers. A cross-check process 
ensured accuracy and completeness, with disagreements resolved 
through open-meeting discussions following our coding book (see 
supplementary materials for dataset preparation details). 

6.2.2 Key Pose Extraction. Motion-captured data inherently lacks 
keyframe support, which is widely used in character animation 
to highlight important moments with representative poses. Prior 
work [15] detects extreme points in joint trajectories to extract key 
poses. Inspired by TimeTunnel [84], which extracts key poses from 
multiple trajectories, we apply a similar approach. We compute the 
difference between whole-body joint trajectories (11 editable joints, 
Sec. 6.1) and their Gaussian-smoothed versions frame by frame. 
Local extrema are identified as key poses, and we iteratively extract 
a sequence (denoted as A) until the maximum difference falls below 
a predefined threshold. The threshold is a parameter to constrain 
the maximum difference in joint distances. 

Validation. We evaluate this method on our dataset (30 FPS) 
under different thresholds. Following action spotting studies [33], 
we consider a match if the detected key pose aligns with the ground 
truth (denoted as B) within ±5 frames. Precision is defined as the 
proportion of elements in A that match B, while recall measures 
the proportion of B found in A. At a threshold of 0.46, the F1-score 
peaks at 0.67, providing a reliable cold start for key pose segmen-
tation. Pose extraction, as the first step, demands high accuracy. 
However, achieving high accuracy remains challenging, as there is 
a lack of general models that meet coach-acceptable standards for 
unified pose extraction. Additionally, key poses often carry seman-
tic meaning (e.g., squat, push-up, or tuck jump in a burpee) and may 
not always align with extreme points. Therefore, for similar fitness 
activities targeting the same body part (e.g., chest fly and push-ups 
for the chest), we utilize predefined key attribute templates (e.g., 
the trajectory and angle of elbow) from our dataset to assist users 
in refining key poses manually in the display view, enabling them 
to add, remark, or delete key pose frames as needed. 

6.2.3 Kinematic Constraint Setting. After key pose extraction, Vis-
Mimic allows users to set the kinematic constraints between key 
poses with intuitive interaction. As shown in Figure 9, the three 
types of constraints which we introduced in subsubsection 5.2.2 can 
be easily defined with clicks. For temporal constraints, i.e., the tra-
jectories of the joints, users can directly click on the joint they want 
to track. For positional constraints, i.e., the distance constraints, 
users can first click on a joint or an axis of a joint, and then click 
on another to constrain the distance between them. For angular 
constraints, users can click on three objects in order as the first 
side endpoint, the vertex, and the second side endpoint to define 

Figure 9: VisMimic supports kinematic constraint setting by 
allowing users to directly click and link joints and axes. 

the angle constraint. The vertex should be a joint, while the two 
endpoints should be both joints or a joint and an axis of a joint. 

6.3 Feedback Generation 
Target feedback is generated by comparing key pose pairs from 
the trainee and reference standard. While few studies focus on 
providing natural language feedback [20, 29], text alone or with 
simple key joints markers is often insufficient, placing the burden 
of how to correct on the trainee [14]. Thus, we first generate the 
feedback text and then animate it starting from the error pose. 

6.3.1 Feedback Text. We aim to generate correctional feedback in 
natural language, explaining how the trainee’s source key pose A 
should be adjusted to match the target reference pose B. Existing 
models treat “human motion as a foreign language”, mapping motion 
to natural language for general understanding [37]. For instance, 
in a squat, the primary focus should be on lower-body movement, 
while variations such as placing hands behind the head or holding 
them in front (e.g., sumo squat) are acceptable. However, existing 
models, lacking semantic awareness, often misidentify upper-body 
variations as outliers. To enhance these models for feedback gener-
ation, we made the following efforts: 

1) We first convert our reconstructed SMPL-X parameters (Pose 
A and Pose B) into joint rotation representations using the SMPL-H 
model [57] (neglecting facial expressions), employing the axis-angle 
representation. The global root rotation is then normalized. 

2) We adopt PoseFix [24], an auto-regressive model conditioned 
on pose pairs, as our foundational model. This approach has been ap-
plied to generating corrective text for pose modification. However, 
since our input pairs are key poses with semantic and sequential 
relationships, directly applying PoseFix results in low-quality feed-
back. To improve inference, we leverage the hierarchical joint struc-
ture of the axis-angle representation to compute global joint posi-
tions. Kinematic constraints are incorporated by assigning weighted 
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Figure 10: Feedback Gallery: Each kinematic constant includes an example with generated feedback and correctional animation. 

importance to related joints (initially 𝑤 = 1). The influence of each 
joint is propagated and decayed along the parent-child hierarchy. 
The final normalized weight matrix is applied to the axis-angle pose 
representation through a constraint filter module. For example, in 
the bottom phase of a squat, both Pose A and Pose B’s axis-angle 
representation ignore elbow and wrist joints. 

3) Pose A and Pose B are encoded as Tokens 𝑎 and Tokens 𝑏 , each 
with a feature dimension of 𝑑 = 32, using a shared pose encoder 
followed by VPoser architecture [53], modified to support 52 joints 
of the SMPL-H body model [57]. The encoded tokens are then fused 
into a set of pose tokens for further processing. 

4) The text decoder outputs a probability distribution over the 
vocabulary for each token. During inference, feedback is generated 
iteratively using a greedy decoding approach [24]. 

Validation. To validate the effectiveness of the constraint filter 
module during inference, we selected three fitness activities from 
our dataset: sumo squat, push-ups, and jumping jacks. These activi-
ties represent lower-body, upper-body, and full-body movements, 
respectively. For each activity, we annotated key pose errors in 
30 samples, with ground truth feedback provided by coaches. We 
segmented the generated text and ground truth into individual sen-
tences, pairing them for comparison. We then computed accuracy, 
recall, and Intersection over Union (IoU) metrics. A feedback sen-
tence pair was considered a match if both body part references and 
descriptive attributes were identical. 

Table 1: Feedback text generation results for various fitness 
activity and with/without constraints filter. 

With Constraints Without Constraints 
Acc. Rec. IoU Acc. Rec. IoU 

Sumo Squat 0.77 0.57 0.49 0.57 0.59 0.41 
Push-ups 0.68 0.55 0.44 0.53 0.63 0.40 
Jumping Jacks 0.82 0.57 0.51 0.74 0.57 0.47 

Recommendation Ranking. For key pose pairs with multiple 
feedback options, we compare them with existing sentence-level 
language instructions in our dataset. Each instruction is encoded 
into tokens using CLIP [56], and their semantic similarity is mea-
sured via cosine similarity in the vector space. Feedback is then 

ranked based on the similarity matrix, ensuring that the most rel-
evant correctional feedback are prioritized. We enable coaches to 
select feedback in the Correction View (Fig. 11.D), allowing multi-
angle comparison of the trainee and reference states in the Compare 
View (Fig. 11.C1). Relevant kinematic constraints and their numeri-
cal values are highlighted to support detailed analysis (Fig. 11.C2). 
As coaches make selections and additions, feedback for the entire 
motion chain is progressively generated. 

6.3.2 Feedback Animation. To enhance the clarity of generated 
correctional feedback, we aim to animate the feedback within the 
motion. Inspired by text-driven motion generation and editing [37], 
we apply the TMED model from MotionFix [41], a diffusion-based 
motion editing model. Given the static key pose at the error mo-
ment, a textual description detailing the key pose and correctional 
feedback, and a fixed noise vector to introduce controlled random-
ness, the model generates an animated correctional motion. The 
animation naturally transitions toward the corresponding reference 
key pose as its target. We provide examples, as shown in Fig. 10. 

Validation. We tested our method on the previously identified 
key pose pairs. Using annotated ground truth feedback, we asked 4 
coaches to evaluate the motion quality (Mean=3.92, SD=0.64) and 
plausibility (Mean=4.17, SD=0.55) of the generated animations on 
a 5-point Likert scale. The results indicate that our approach pro-
duces acceptable feedback animations. Additionally, we conducted 
a quantitative analysis. Since the reference key pose serves as the 
target pose for correction, we compared the end pose of the gener-
ated animation with the corresponding reference key pose. Given 
that both poses use the same human model with a shared root joint 
origin, we directly computed the L2 distance using: 

𝐷 (𝑃1, 𝑃2) = 

 
𝑛∑︁ 

𝑖=1 

∥𝑃1𝑖 − 𝑃2𝑖 ∥ 2 

where 𝑃1 and 𝑃2 represent the generated and reference key poses, 
respectively, and 𝑛 is the number of joints. Results on all sample 
pairs (Mean=0.15, SD=0.08) indicate that the feedback can be effec-
tively animated from the source error to the correct target. 

Since sequential snapshots effectively illustrate motion patterns, 
we visualize each feedback’s relative constraints from an suggested 
viewpoint (e.g., front, side, or top). The viewpoint selection depends 
on the camera angle and the involved body parts. To highlight key 
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joint movements in the correctional animation, we augment the 
error pose (Fig. 11.D1) by marking key joints and overlaying direc-
tional arrows indicating the movement direction and magnitude. 

6.4 Hardware and Software 
The models [24, 41, 51] within VisMimic are implemented in Py-
Torch on a server equipped with an A100 GPU (80GB RAM). The 
browser interface is built with Vue.js and FastAPI, leveraging HTML 
Canvas and Three.js for video rendering. By employing WebGPU 
[81] and multi-threading, we accelerate heavy rendering tasks. 

7 Evaluation 
We evaluate VisMimic through (1) a real-world use case, (2) a com-
parative study of generated vs. original feedback videos from coach 
and trainee perspectives, and (3) a usability study with coaches. 

7.1 Usage Scenario 
Here we demonstrate how a sports coach, Lexi, creates a feedback 
video using VisMimic, based on the trainee and reference videos 
of the sumo squat motion. As a fundamental exercise for glute 
training, the squat serves as the basis for many complex motions. 
In this case, Lexi first imports the videos into VisMimic and selects 
the corresponding motion type (Fig. 11.A). VisMimic automatically 
reconstructs both the motion and the avatar, displaying the results 
in the display view with the input video overlaid as a background for 
visual comparison (Fig. 8). To extract key poses, VisMimic provides 
an initial segmentation as a cold start. Lexi accepts the reference 
motion’s segmentation but refines the trainee’s key frames based 
on key attributes (e.g., hip height and knee angle). 

After reviewing both videos, Lexi switches to the assessment 
view (Fig. 11.B) to apply constraints on key poses. In addition to 
using existing templates, she adds custom constraint attributes. By 
clicking and linking joints and axes, she sets kinematic constraints 
(e.g., foot distance, where clicking the left ankle, then the right 
ankle, and linking them specifies the distance constraint). Lexi then 
uses the compare view (Fig. 11.C1) to inspect the motions from mul-
tiple perspectives. A side panel (Fig. 11.C2) presents the numerical 
values of kinematic attributes, with color encoding highlighting 
differences. By iteratively refining constraints, Lexi completes the 
setup. Then VisMimic generates feedback candidates by comparing 
the trainee’s motion against the reference. When Lexi clicks on a 
feedback candidate, the compare view highlights the correspond-
ing relative constraints, making the correction rationale explicit. 
After reviewing the feedback suggestions across all key poses, Lexi 
finalizes and confirms the feedback to be delivered. 

The generated feedback video is presented in the edition view. 
After previewing the video, Lexi can quickly locate and review 
the feedback presentation by linking with the correction view 
(Fig. 11.D). The clip view (Fig. 11.D1) provides detailed control 
and supports customization. For example, since the preparation 
phase of the squat requires “feet twice shoulder-width apart”, Lexi 
adjusted the observation perspective of the 3clip from side to front 
for better clarity (as shown in Fig. 12). Finally, a feedback video is 
created. 

7.2 Comparative study 
This study aimed to assess the effectiveness of feedback delivery 
and the viewing experience of generated feedback videos from both 
the producer’s (coach) and recipient’s (trainee) perspectives. 

7.2.1 Participants. Although VisMimic targets coaches as its pri-
mary users, trainees are the ultimate beneficiaries of the feedback 
videos and should therefore be considered. We recruited 24 partici-
pants: 12 sports coaches (P1–P12; 8 male, 4 female; mean age = 29.6, 
SD = 3.68) and 12 trainees with prior video learning experience 
(T1–T12; 6 male, 6 female; mean age = 23.7, SD = 3.52). All coaches 
had at least two years of motor coaching experience and a minimum 
of three months video-based coaching experience. 

7.2.2 Data. We compared feedback videos created by professional 
coaches with VisMimic generated versions. To ensure data consis-
tency, both versions were created from similar trainee and reference 
videos with same motion chain structure. The original feedback 
videos were created independently by three professional coaches 
(E1-3, from our preliminary study) after identifying key motion 
errors and feedback instructions. These videos typically included 
on-screen text and visual cues (e.g., highlights over body parts) 
to indicate motion errors, followed by demonstrations of correct 
movements using the reference video. In parallel, we used VisMimic 
to automatically generate feedback videos conveying the same in-
structional content. We prepared three video sets covering different 
motion types — Sumo Squat, Shoulder Press, and Yoga Warrior I — 
selected to span various body focus areas (lower body, upper body, 
and full body) and different levels of motion complexity (ranging 
from simple workout movements to complex yoga poses). 

7.2.3 Procedure. This online study lasted approximately 35 min-
utes, comprising a 30-minute experiment and a 5-minute semi-
structured interview. After obtaining recording consent, we col-
lected participant background information and began the session. 
Aside from background-specific questions, coaches and trainees 
followed the same procedure and evaluation criteria. During the 
experiment, participants viewed feedback videos for both one Yoga 
(7 minutes) and two Workout (4 minutes) scenarios. To minimize 
potential bias introduced by different motion types, we randomized 
the order of the video pairs (original vs. VisMimic-generated) for 
each participant. After individually viewing both versions, partic-
ipants were asked to complete following tasks: (1) Identification: 
locate when the motion error occurs and find the body parts with 
errors; (2) Comprehension: understand how to perform the right 
movement and how to correct the identified error. Participants then 
rated both versions using a 7-point Likert scale on feedback effec-
tiveness and viewing experience, followed by selecting the overall 
preferred version based on these evaluation criteria. A post-study 
interview was conducted using the “Think Aloud” protocol. 

7.3 Usability Study 
The purpose of the study was to evaluate the usability of VisMimic 
with its target users (coaches). The participants were the coaches 
who had previously taken part in the comparative study. Each study 
included a 10-minute introduction to VisMimic, followed by hands-
on exploration for participants to understand system functionality. 
After familiarization, coaches were asked to create a feedback video 

https://Three.js
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Figure 11: The system interface of VisMimic. (A) The Media view for video management. (B) The assessment view supports 
interactive kinematic constraint setting. (C) The exploration view displays the reconstructed motion and enables comparison 
under specified constraints. (D) The correction view presents generated feedback candidates and supports editing. 

Figure 12: Timeline orientation is consistent with the per-
spective (side view with X-axis and front view with Y-axis). 

within 15 minutes using the same input video pair. During the pro-
cess, participants were encouraged to share their insights and use 
VisMimic to edit and customize the content. Afterward, they com-
pleted the System Usability Scale (SUS) questionnaire [18]. Finally, 
we conducted a semi-structured interview to collect user feedback. 
The entire online session lasted approximately 30 minutes. 

7.4 Study Results 
7.4.1 Quality of Generated Feedback Video. Based on the 576 rat-
ings from 24 participants, VisMimic-generated feedback videos 
received favorable scores for feedback delivery effectiveness and 
viewing experience. Including neutral responses„ 75% (51/72) of 
user preference ratings favored VisMimic-generated videos over 
the original version (75% for Yoga case, 50% for Shoulder Press 
case, and 83% for Sumo Squat case). The differences in participants’ 
evaluations across motion types may be attributed to the varying 

levels of motion complexity. For simpler motions, such as Shoulder 
Press, P6 and P8 commented that “Shoulder Press only contains two 
key poses, making it easy to learn directly from the motion demon-
stration”. In contrast, for more complex motions involving three 
or more key poses, participants P1, P3, P7 and T4, T5 particularly 
appreciated the inclusion of key pose snapshots. They noted that 
these snapshots helped them quickly understand the overall mo-
tion pattern and capture essential transitional poses between key 
movements. We analyzed the questionnaire results as follows: 

Effectiveness of feedback delivery. Fig. 13 illustrates that 
participants generally gave positive ratings for the effectiveness of 
feedback delivery on both identification and comprehension. 

• Combing key poses with trajectory enables easier identification. 
Identifying motion errors in both temporal occurrence and spe-
cific body parts is fundamental for motor coaching. Participants 
provided positive feedback on the identification tasks, including 
“locating when the error occurs” and “finding the body parts with 
errors.” Specifically, 75.0% of the participants reported that Vis-
Mimic facilitated easier error localization. As P2 and T8 noted, 
“The red highlight on the key pose directly grabbed my attention, 
and with subsequent comparisons, I quickly got the motion error.” 
P5 and P6 appreciated the video navigation enabled by key poses 
as interaction nodes, commenting that “these snapshots are in-
deed representative of the complete motion, making errors easier 
to notice.” For the error body part identification, 68.1% of the 
participants found our generated version more effective. Con-
sidering that motion errors often involve multiple aspects, both 
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Figure 13: The comparative study evaluates feedback videos from both coach and trainee perspectives, comparing the original 
version with the VisMimic-generated version. 

coaches and trainees found the integration of key pose snapshots 
particularly helpful for gaining an overview. As P7 reflected, “The 
key pose snapshot gave me an overview, and I could further explore 
details within it, such as trajectory and angles.” Overall, combining 
key poses with trajectories in feedback video improved users’ 
efficiency in learning differences from the reference standard and 
supported quickly identifying motion errors. 

• Feedback with correctional animation facilitates easier comprehen-
sion. Enhancing the comprehension of feedback is the primary 
goal of creating feedback videos in motor skill learning. Partici-
pants provided positive feedback on the comprehension-related 
tasks, including “understanding how to perform the right move-
ment” and “understanding how to correct the error”. 63% of the 
participants agreed that the VisMimic-generated version was 
more effective in understanding the correct movement execu-
tion. As T1 and P10 reported, “With the video play control and 
view-switching for front, side, or other perspectives, I could observe 
the whole motion.” However, for simple motions like Shoulder 
Press, P5 commented that “the original video is sufficient as the 
motion only requires a front view to understand.” Understanding 
how to correct motion errors was considered a key strength of 
VisMimic, with nearly 88.9% of participants agreeing on its ad-
vantage. Experienced coaches (P1, P6) with over three years of 
remote coaching experience highly valued the correctional ani-
mation, noting that “previously we told trainees what to do, but it 
was difficult to describe how to perform it — this visual feedback 
makes the guidance concrete.” Similarly, T9 and T11 compared it 
to offline coaching, stating that “physical contact is effective but 
limited in remote settings — this animation facilitates communi-
cation in remote coaching.” Overall, the correctional animations 
made feedback more intuitive and easier to comprehend. 

Viewing Experience. The overall experience of viewing the 
feedback videos was well-received. Most participants found the 
VisMimic-generated version to be more novel and intuitive com-
pared to the original videos. T2 and P5 appreciated the feedback 
card with clearly labeled error body parts, noting that “this clearly 
helped me break down and understand the motion error”. However, 
differing from their conventional feedback video experience from 
both coaches and trainees, the unfamiliar presentation style of the 

Figure 14: System Usability Scale results of usability study. 

VisMimic-generated videos also introduced a certain level of cog-
nitive load. After watching all generated cases, T6, T10, and P11 
commented that “At first, it felt a bit strange, but I gradually got used 
to this video style and was able to understand the feedback within 
it”. In contrast to the original video interaction, P6 and P12 particu-
larly appreciated the multi-view observation and key pose-based 
navigation provided by VisMimic. They noted that “It is easy to 
control the playback to quickly view coaching content”. T1 and T5 
emphasized that “multi-view is essential for yoga coaching, since 
occlusion frequently occurs during yoga movements”. Additionally, 
P8 and P9 recognized that the motion representation style in our 
generated video was related to the motion chain. They found that 
“this chain with nodes and links is helpful for step-by-step learning.” 

7.4.2 Coach Perspective vs. Trainee Perspective. We compared the 
mean and standard deviation of ratings from coaches and trainees 
and used pairwise t-tests to assess statistical significance. Results 
(all p > 0.05) indicate no significant differences between the two 
groups, despite differences in fitness level and understanding of 
standard movements. This aligns with previous findings and par-
tially supports the overall quality of the generated feedback videos. 
However, some trainees (T3, T4, and T12) reported that, “the cur-
rent videos still require considerable cognitive effort, making it 
difficult to follow and replicate the correct movements.” Addition-
ally, age differences may have influenced user experience (trainees 
on average six years younger than coaches), found the video eas-
ier to control. As T7 noted, “The controls are similar to streaming 
platforms. Despite the amount of information, replaying helps me 
grasp it easily.” Therefore, improving interface accessibility and 
offering usage guidance could help bridge this gap and enhance the 
overall user experience across different perspective. 
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7.4.3 Usability of VisMimic. VisMimic achieved an average SUS 
score of 81.46, with a learnability score of 76.04 and a usability score 
of 82.81 (Fig. 14), placing our system within the top 10% of SUS 
ratings [18], indicating acceptable system usability. Considering 
that some coaches had limited prior experience with motion analy-
sis systems or primarily relied on just video not motion tracking 
data, it is reasonable that certain interactions required additional 
guidance. Despite this, all participants agreed that the system’s fea-
tures worked seamlessly together, and expressed willingness to use 
VisMimic. This further supports the effectiveness of our interaction 
design and the integration of modules within the workflow. 

8 Discussion 

8.1 Reflection on Current Workflow 
Applying human biomechanical constraints to improve mo-
tion reconstruction results. Most human motion reconstruction 
methods rely on parametric models such as SMPL [49] and SMPL-X 
[53], which offer compact, generalizable representations of body 
shape and pose. These models are widely adopted for their effi-
ciency and compatibility with video-based motion capture pipelines. 
However, due to the absence of biomechanical constraints, they 
often generate anatomically or physically implausible poses [76] 
limiting their accuracy and realism. Incorporating biomechanical 
constraints [40] into the reconstruction process can reduce such 
artifacts and enhance the reliability of motion-based feedback. 

Incorporating human-object interaction and sports perfor-
mance in feedback generation. The current version of VisMimic 
models only the human body, without considering interactions with 
external objects. However, many motor tasks, such as throwing a 
ball or swinging a racket, involve human-object interactions where 
object-related constraints are crucial. Accounting for these interac-
tions would enable more accurate modeling of motion dynamics and 
allow for more context-aware feedback [14]. Additionally, integrat-
ing sports performance metrics, such as output velocity or accuracy 
[45], can provide meaningful constraints to guide feedback. For 
example, in a throwing task, the throw speed and precision can 
serve as measurable outcomes. Incorporating these elements would 
improve feedback specificity and broaden application scenarios. 

Extending VisMimic to Real-Time AI Coaching Applica-
tions. Although VisMimic currently functions offline, it holds 
strong potential for real-time AI coaching deployment. With ad-
vancements in video-based motion capture and efficient feedback 
algorithms, AI analysis and feedback delivery during training ses-
sions become feasible, offering actionable guidance to trainees. To 
support this interactive paradigm, VisMimic defines a structured 
input-output pipeline for feedback video generation, enables con-
trollable editing, and incorporates coaches’ experiential knowledge 
via motion chains. Future work will focus on system optimization 
and model refinement to realize end-to-end AI coaching. 

8.2 Limitations and Future Work 
We extend the discussion of the current limitations of VisMimic’s 
feasibility and propose feasible opportunities for future work. 

• Feasibility of VisMimic. 
Applicability: Although VisMimic can process indoor or outdoor 
motor coaching, its application in the real world may be limited 
by video quality. High-fidelity motion tracking data are derived 

from sensors [62] or volumetric video [71]. Our future work will 
involve incorporating multimodal input into the workflow. 
Generalizability: With model validation, VisMimic achieved ac-
ceptable results. However, for in-the-wild scenarios or unique 
motor tasks (e.g., choreographed movements), the generated feed-
back may fail (unnatural movements). A feasible solution is to 
expand the database to include more diverse trainee-reference 
motion pairs with language feedback [29], covering a wider range 
of domains. Alternatively, data programming could be employed 
to define labeling functions that express weak supervision strate-
gies [32], thereby generating large-scale datasets. 
Scalability: (1) With the motion data flow, the system modules are 
scalable, enabling potential extensions such as interactive editing 
(e.g., engaging drag operations for motion animation generation 
[74]). (2) VisMimic currently provides reference-based feedback 
using normalized motion data. However, this coarse retargeting 
overlooks individual body differences (e.g., arm length affects 
movement range), making a universal “standard” difficult to de-
fine. In sports like basketball or tennis, such variability further 
complicates reference selection. To address this, future work will 
explore physically simulated motor skill experiments [70, 82] to 
enable more personalized and adaptable feedback. 

• Manual Pose Extraction and Kinematic Constraint Defi-
nition. (1) Accurate pose extraction is critical but challenging, 
especially for detecting transition poses and handling motion-
specific key pose variations. While we tested learning-based 
methods (e.g., TAL-Net [19], VideoMAE [68]), no general model 
currently achieves coach-acceptable accuracy, necessitating man-
ual refinement. (2) In fitness coaching, we applied constraint 
templates for similar motions. However, manually defining kine-
matic constraints for each key pose is labor-intensive. To reduce 
this burden, we plan to explore domain-knowledge agents with 
human motion understanding [73] to automatically extract pose 
constraints under task-specific semantics. 

• Lack of audio feedback. VisMimic currently focuses on visual 
feedback, but audio plays a key role in conveying rhythm and 
timing in motor coaching. Future work will explore integrating 
audio to enhance feedback effectiveness. 

8.3 Lessons Learned 
Implications for video-based coaching. Our user study high-
lights that coaches place high value on the quality and clarity of feed-
back outputs. Additionally, there is strong interest in autonomous 
tools that can streamline the video creation process and reduce 
manual effort. Coaches expressed a clear need for systems that are 
not only technically robust but also accessible and time-efficient. 

Working with sports experts. Collaborating with sports ex-
perts highlighted challenges in adopting new technologies. Many 
coaches lack familiarity with novel tools. This cognitive gap, which 
is shaped by diverse backgrounds and varying digital literacy, hin-
ders system adoption. Tasks such as setting constraints or con-
figuring feedback require intuitive interfaces and clear guidance. 
Building mutual understanding through close collaboration was 
essential to ensure usability and trust in the system. 

Multi-perspective evaluation reflects the dual nature of 
coaching. The coaching process is inherently bidirectional, where 
feedback videos serve as a communication medium which are cre-
ated by coaches and interpreted by trainees. As a generation tool, 
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VisMimic’s output quality must address the needs of both. Including 
both perspectives in evaluation ensures that videos are not only 
easy to produce but also effective and actionable for the end users. 

9 Conclusion 
We introduced VisMimic, a novel approach to assist coaches in cre-
ating augmented feedback videos for motor skill learning through 
the comparison of trainee and reference videos. For feedback rep-
resentation, we integrated the motion chain into feedback videos, 
combining key poses with motion trajectories to simultaneously 
convey both the overall motion dynamics and critical static postures. 
For feedback generation, our method automatically generates feed-
back candidates and delivers feedback in both textual descriptions 
and visual animation. User studies demonstrate the effectiveness 
of the generated feedback videos in enhancing error identification 
and movement comprehension, and the usability of VisMimic. 
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